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Abstract

Rapidly increasing air temperatures will alter permafrost conditions across the Arctic,

but variation in soils, vegetation, snow conditions, and their effects on ground ther-

mal regime complicate prediction across spatial and temporal scales. Processes that

result in the emergence of new surfaces (lake drainage, channel migration, isostatic

uplift, etc.) provide an opportunity to assess the factors influencing permafrost

aggradation and terrain evolution under a warming climate. In this study we describe

ground temperatures, vegetation, and snow and soil conditions at six drained lake

basins (DLBs) that have exposed new terrain in the Tuktoyaktuk Coastlands in the

last 20–100 years. We also use one-dimensional thermal modeling to assess the

impact of ecological succession and future climate scenarios on permafrost conditions

in historical and future DLBs. Our field observations show that deep snow pack and

shallow organic layers at shrub-dominated DLBs promote increased thaw depth and

ground temperatures compared to a sedge-dominated DLB and two ancient DLB

reference sites. Modeling of past and future drainages shows that climate warming

projected under RCP 8.5 will reduce rates of permafrost aggradation and thickness,

and drive top-down thaw that could degrade permafrost in shrub-dominated DLBs

by the end of the century. Permafrost at sedge-dominated sites was more resilient to

warming under RCP 8.5, with the onset of top-down thaw delayed until about 2080.

Together, this indicates that the effects of ecological succession on organic soil devel-

opment and snow drifting will strongly influence the aggradation and resilience of

permafrost in DLBs. Our analysis suggests that DLBs and other emergent landscapes

will be the first permafrost-free environments to develop under a warming climate in

the continuous permafrost zone.

K E YWORD S
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1 | INTRODUCTION

Air temperatures in northern Canada have increased at more than

double the average global rate.1,2 Accelerated warming has increased

permafrost temperatures and active-layer thickness at sites across the
The data used in this study will be made available through a Northwest Territories Geological

Survey Open Data Report.
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Arctic,3–5 causing top-down permafrost thaw, ice wedge

degradation,6–8 increased thaw-driven slope failure,9–11 and lake

drainage.12–14 In the subarctic, permafrost degradation is causing the

collapse of permafrost peat plateaus, and the conversion of spruce

woodlands into wetlands and fens.15,16 Coupled Earth System Models

project declines in the global extent of permafrost, but the rate and

magnitude of this loss vary widely among models.17–19 The degrada-

tion of permafrost is a transient process with a high degree of spatial

variability, and our understanding of the response of permafrost to cli-

mate warming remains limited, particularly in areas of continuous per-

mafrost where thermal history, ground ice, latent heat effects, and

ecosystem feedbacks have an important influence on rates of degra-

dation.20 Predicting the impacts of climate warming on permafrost

conditions is also made challenging by fine-scale variability in ground

temperatures associated with variation in soil moisture, vegetation,

and snow conditions.4,21–23 A significant lag in the response of contin-

uous permafrost to a changing climate should be anticipated.20,24,25

Conversely, emergent surfaces that have not been preconditioned by

a cold Holocene climate and the ecological conditions created by

long-term succession (vegetation, organic soils, etc.) are likely to host

thin and warm permafrost that will be more responsive to ongoing

changes in climate.

The emergence or exposure of new terrain in cold regions where

ecological succession, soil development, and the time since exposure

result in permafrost conditions distinct from the surrounding landscape

offers a unique opportunity to study the factors influencing permafrost

aggradation, terrain evolution, and the resilience of permafrost to

changing climate conditions. Lake drainage or drying,26–29 channel

migration,30,31 and isostatic uplift32,33 are widespread processes that

all yield permafrost-free environments where exposure to a cold

climate, coupled with biophysical feedbacks, drives permafrost

aggradation.34–36 Past research in these terrain types has shown that

factors including substrate properties, snow cover, vegetation, and

time since emergence interact with climate to dictate the rate of per-

mafrost aggradation, permafrost thickness, ground-thermal regimes,

and ground ice development.31,32,37,38 Projected climate warming will

alter ecological trajectories, rates of ground heat loss, and the process

of permafrost aggradation, raising the possibility that emergent envi-

ronments (in the continuous permafrost zone) will be amongst the first

permafrost-free areas to develop in the near future.

To investigate how emergent land surfaces in permafrost regions

will evolve under changing climate, in this study we focus on perma-

frost aggradation after rapid lake drainage, a process that occurs in

many areas of continuous permafrost.26,39–41 Water bodies within the

continuous permafrost zone significantly moderate the effect of cli-

mate on ground temperatures.42–44 In lakes and ponds where depth

exceeds the maximum thickness of winter ice, lake bottoms are unfro-

zen.28,42,45 The geometries of these “taliks” are related to the diame-

ter of the waterbody, lake-bottom and adjacent permafrost

temperatures, the thermal properties of earth materials, and the geo-

thermal heat flux.42 Based on data from Richards Island, Northwest

Territories, Canada, where the mean annual temperature of

permafrost ranges from �5 to �8�C, Burn42 estimated that deep cir-

cular lakes with a radius of greater than 180 m are likely to be under-

lain a talik that extends beyond the depth of the adjacent permafrost.

Following drainage and exposure of the lake-bottom, cold climate

conditions drive permafrost aggradation and the development of gro-

und ice and periglacial landforms.26,29,46 In the decades following their

emergence, permafrost and biophysical conditions in drained lake

basins (DLBs) are relatively dynamic and may affect the rates of per-

mafrost aggradation.27,35,47 Former lake basins tend to be poorly-dra-

ined, and on centennial to millennial timescales, these conditions

facilitate organic soil accumulation and the development of polygonal

peatlands and wetland complexes.48,49 These features are stable com-

ponents of the landscape and can comprise a significant portion of the

terrestrial environment.26,39,50–54 As such, rapidly-drained lake basins

provide excellent systems to explore the factors influencing perma-

frost aggradation in a warming climate and the evolution and resilience

of permafrost in emergent landscapes across continuous and extensive

discontinuous permafrost zones. In this study, we describe the surface

conditions (soil, vegetation, snow, and ground temperature) at six lake

basins that drained between 20 and �100 years prior to our fieldwork.

We also use thermal modeling to explore the impact of ecological suc-

cession and future climate scenarios on permafrost aggradation and its

resilience following lake drainage.

2 | METHODS

2.1 | Study area

This study focusses on the Tuktoyaktuk Coastlands, in the northern

Northwest Territories, Canada (Figure 1). This upland area east of the

Mackenzie Delta is underlain by Pleistocene sediments characterized

by ice-rich glacial till and ice-contact deposits.53 The landscape is pre-

dominantly hummocky uplands with mineral soils,56 but organic

deposits are also common in low low-lying areas commonly associated

with lacustrine basins.57,58 Vegetation in the southern part of this area

is characterized by the transition from open spruce woodlands to a

landscape dominated by tundra.59 Moving northward across this

region, upright shrub tundra dominated by green alder, dwarf birch,

and willows gradually shifts to graminoid and dwarf shrub-dominated

tundra.60,61 The climate of the Tuktoyakuk Coastal Plain is cold and

terrestrial surfaces are underlain by continuous permafrost, which can

be up to 500 m thick.62 Average annual air temperatures at Inuvik and

Tuktoyaktuk are �8.2 and �10.1�C, and summers are short and cool,

with average air temperatures of 12.2 and 8.8�C, respectively.63 At

undisturbed locations across the study area, the mean annual temper-

ature at the top of the permafrost ranges from �2 to �7�C in

response to variation in soil moisture, vegetation, and snow condi-

tions.4 A composite climate record from Inuvik and Aklavik (55 km

west of Inuvik) demonstrates that average annual air temperatures

have increased by 3.1�C since 1926.64 This shift in climate has driven

an increase in permafrost temperatures of �2�C.4

LANTZ ET AL. 177
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2.2 | Site selection

In the Tuktoyatuk Coastlands, rapid lake drainage typically occurs

when thermomechanical erosion degrades near-surface ground ice.40

This results in complete or partial drainage, which typically occurs

quickly (i.e., hours to days) and creates conditions conducive to the

aggradation of permafrost.35,55,65 We used historical air photos and

field reconnaissance to select six drained lakes and two reference

sites in the study area (Figure 1; Table 1). Drainage dates were esti-

mated using georeferenced air photos from 1930, 1950, and 1972

and Landsat imagery (1973–2010) from the USGS archive (Figure 2).

All of the study basins selected have outlet channels visible on aerial

F IGURE 1 Map of the study area in the Tuktoyaktuk Coastlands showing drained lake basins (DLBs) and reference sites sampled in the field

and lake basins that drained between 1950 and 2000 across the entire study area (see55). Inset map in the upper left corner shows the extent of
the main map in northwestern North America

TABLE 1 Average mean annual ground temperature at 1-m depth (MAGT), thaw depth, soil moisture, organic soil thickness, late winter snow
depth, and vegetation height in the six drained lake basins (DLBs) two reference sites. The first column shows the site name and the date of rapid
lake drainage. The location of each DLB is also shown in Figure 1. Estimates of mean vegetation cover shown in bold type were calculated based
on data from the 38 DLBs shown in Figure 1. HLDL and SPDL are abbreviations for Husky Lakes (Imaryuk) Drained Lake and Swimming Point
Drained Lake, respectively

Drained Lake Basin
(drainage date)

MAGT
(�C)

Thaw
depth (cm)

Soil
moisture (%)

Organic
thickness (cm)

Snow
depth (cm)

Canopy
height (cm)

Shrub
cover (%)

Herb
cover (%)

Sedge wetland
cover (%)

HLDL3 (1995) 0.80 99.7 42.4 1.5 59.5 NA 70 25 5

SPDL4 (1950–70) �0.11 85.6 64.1 3.4 88.9 36.5 60 25 15

HLDL2 (1950–70) 0.09 94.6 45.1 3.3 93.1 56.0 35 60 5

SPDL1 (1950–70) �0.10 66.5 55.3 4.2 77.5 95.0 70 25 5

SPDL3 (1950–70) 0.44 92.2 47.4 2.2 155.8 40.7 70 25 5

HLDL6 (Pre 1930) �2.75 45.6 52.1 21.5 43.8 23.7 15 30 55

Reference site Study area mean (n = 38) 48 37 15

Tuktoyaktuk �4.73 34.0 31.6 126.3 31.7 14.3

Jimmy Lake �4.42 40.5 28.2 >30 47.0 21.0

178 LANTZ ET AL.
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imagery that are indicative of rapid drainage. Data from the

ArcticDEM,66 coupled with georeferenced air photos of the lake-

shore prior to drainage, indicate that maximum lake depth ranged

from 3 to 8 m. Prior to drainage, these lakes had minimum diame-

ters ranging from 400 to 1500 m. Together, these observations

indicate that all of the DLBs we studied were all underlain by a

through-going talik.28,42 These data also show that our study lakes

did not have littoral terraces, which are common in some parts of

the study area and are typically underlain by permafrost.42 Two

reference sites were selected in areas of high centered polygonal

terrain �9 km south of Tuktoyaktuk and �32 km north of Inuvik,

respectively (Figure 1). These peatland sites are located in ancient

lake basins that probably drained sometime during the mid-

Holocene.48,49

F IGURE 2 Airphotos of the six drained lakes
showing the extent and approximate timing of
drainage. The scale bar on each group of photos
represents 400 m. Colored outlines show the
extent of surface water at each time point.
Thermistor locations are shown as stars on the
most recent image in the column on the right
[Colour figure can be viewed at wileyonlinelibrary.
com]
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2.3 | Ground temperatures

To measure ground temperatures at our sites we drilled a shallow

borehole (1 m) at each site and attached thermistors to PVC pipes,

which were installed in the boreholes to position thermistors at depths

of 0.1 and 1.0 m. We used Hobo Pro U23–003 data loggers with our

thermistors, which had an accuracy and precision of ±0.21 and

0.02�C, respectively. Loggers were set to record measurements every

2 h from August 2013 to August 2018. In some instances, PVC pipes

were subjected to wintertime frost heave of 5–15 cm and had to be

adjusted to reposition the thermistors. In these instances, data (at the

surface and 1-m depth) from the start of freezeback to the time of

repositioning the following year were not included in our analyses.

2.4 | Site characterization

At each DLB or reference site we used transects, grids, and points to

measure a suite of biotic and abiotic variables. We measured organic

soil thickness at eight locations in each DLB using a small shovel to

expose the upper soil horizons. Organic thickness at the Tuktoyaktuk

reference site was measured using a gas powered coring system to

drill to the base of the peat deposit at three locations. At each site we

made 10 measurements of late season thaw depth by pushing a grad-

uated steel probe to the depth of refusal. Volumetric soil moisture (%)

was estimated using a handheld moisture probe (HH2 Moisture Meter

with a ML2x sensor) from Delta-T Devices to take three readings at

each site. Measurements of thaw depth and soil moisture were made

from August 13 to 15, 2017, within a 2-m radius of each thermistor.

On April 23, 2017 we measured late winter snow depth at all sites

using a graduated avalanche probe. Snow measurements were made

every 0.5 m along a 25-m transect centered on each thermistor

(n = 50). We measured vegetation height at each site using a

30 � 30-m grid with sampling points every 2 m (n = 144). At each

grid point we measured the maximum height of the vegetation and

recorded the functional groups present (tall shrubs, dwarf shrubs,

forbs, grasses, sedges, mosses, lichen). At the reference sites, all

measurements were made within polygon centers. To characterize

variability in vegetation structure across all of the lakes in the

study area that drained between 1950 and 2000, we used plot-based

field surveys and high-resolution drone surveys completed in

August, 2018 to determine the cover types that could be reliably

mapped using the Worldview images available in ArcPro (v2.6). These

cover classes included upright shrub (Salix spp., Alnus viridis, and

Betula glandulosa), herbaceous (Arctagrostis spp., Calamagrostis spp.,

Epilobium spp., moss, etc.), sedge (Carex aquatilis and Eriophorum

spp.), and bare ground. Subsequently, we used Worldview images to

estimate their percentage cover in 38 DLBs across the study area,

including the six DLBs we visited in the field (Table 1). To compare

biotic and abiotic parameters we used one-way ANOVAs and Tukey-

adjusted pairwise comparisons to test for statistically significant

differences among sites.67

2.5 | Permafrost modeling

2.5.1 | Overview

We used historical and projected climate data and known soil proper-

ties to model the aggradation of permafrost in a newly exposed DLB

using the Northern Ecosystem Soil Temperature (NEST) model.68 NEST

has been used to model permafrost conditions at Arctic and subarctic

sites across a range of spatial scales.25,69,70 It is a one-dimensional

process-based permafrost model that considers the effects of climate,

vegetation, snow, and soil conditions on ground thermal dynamics

based on energy and water transfer through the soil–vegetation–

atmosphere system. Ground temperature is calculated by solving the

one-dimensional heat conduction equation. The upper boundary condi-

tion is determined based on the energy balance of the ground surface

or snow surface if snow exists. The lower boundary condition is

defined by geothermal heat flux at a depth of 120 m. NEST also inte-

grates dynamics in snow depth, snow density, soil moisture, phase

change of soil water, and their effects on ground temperature.68

Our approach to modeling utilized historical and projected climate

data and included three ecological succession scenarios (dense shrub-

land, open shrubland, and sedge meadow). These scenarios reflected

the range of ecological conditions in DLBs across the study area, and

allowed us to explore the resilience of aggrading permafrost to future

climate. First, we verified that the NEST model could capture ground

thermal dynamics at DLBs by calibrating the model for the six sites we

studied in the field. This process used measurements of organic layer

thickness, vegetation structure, ground temperatures, and snow con-

ditions made in the field (Table 1) and is described in more detail in

the supplementary methods section and Table S1. The correspon-

dence between modeled and observed near-surface ground tempera-

tures that resulted from this process are shown in Figures S3 and S4.

Following model calibration with historical climate data, we simu-

lated three typical postdrainage ecological succession scenarios:

(a) dense shrubland, (b) open shrubland, and (c) sedge meadow. In

each scenario, snow and vegetation conditions and organic soil devel-

opment were parameterized to represent decadal-scale changes that

accompany ecological succession. In the dense and open shrubland

scenarios, tall vegetation increased snow trapping, and organic soil

development was slow (Table 2). In the sedge meadow scenario, snow

pack was comparatively lower and wet soils promoted rapid organic

soil development. These parameters are described in more detail in

the next section. All three scenarios simulated lake drainage in 1950

and were run until 2100 using climate projections under Representa-

tive Concentration Pathways (RCP) 4.5 and 8.5 (Figure S1). To assess

the influence of drainage date in the context of a changing climate,

we ran the model for the dense shrubland and sedge meadow scenar-

ios using five drainage years (1900, 1960, 1995, 2030, and 2060). In

all simulations we ran the model from the time of drainage until 2100

under two climate change projections, RCP 4.5 and 8.5. To assess the

influence of ground ice and its latent heat effects on the rates of per-

mafrost aggradation and degradation, we also simulated the effect of

180 LANTZ ET AL.
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excess ice in the upper soil column (1.5–4 m) by increasing the poros-

ity of the soil to reflect 0, 10, 20, and 40% excess ice content.

2.5.2 | Initial conditions in the DLB

Based on the size and predrainage depth of our study lakes, we devel-

oped model scenarios, which assumed that lakes had through-taliks

prior to drainage. The postdrainage bathymetry of the DLBs we stud-

ied indicates that lake depths would have exceeded the maximum lake

ice thicknesses measured in this region from 2000 to 2017.71 The

diameters of the DLBs we studied were greater (400–1500 m) than

the threshold for through-going taliks (360 m) estimated by Burn42

for lakes in the study area. The initial ground temperature was deter-

mined using the approach described by Mackay72 and Burn.42 In this

calculation we assumed that lakes are circular with a diameter of

800 m, are influenced by geothermal heat flux of 0.05 W/m2,73 and

have mean annual lake bottom and surrounding ground temperatures

are 3 and �7�C, respectively.43 The estimated initial ground tempera-

ture decreased from 3.0 to 2.1�C from the top of the talik to a depth

of 120 m. In this analysis we focused on near-surface conditions (0–

60 m) at the center of a DLB, and neglected the potential role of lat-

eral heat transfer.

2.5.3 | Snow drifting, vegetation, and organic soil
development

To integrate the effects of snow drifting due to wind, NEST includes a

snow drifting parameter to modify the input of snowfall.74 Negative

values of this parameter indicate that a site receives wind-transported

snow from its surroundings. For example, a value of �1.0 indicates

that drifting snow input effectively doubles the snowfall from precipi-

tation. In this study we calibrated the snow drifting parameter to

reflect observations made by Mackay35 and field observations we

made in 2017 (Table 2). Based on observations at Illisarvik

(an artificially drained lake about 80 km northwest of our study

area35), we set the snow drifting parameter in 1950 (the first year fol-

lowing drainage) at 0.9 (90% of the snow blows away) for all three

scenarios.35 Between 1951 and 1960, we decreased the snow drifting

parameter from 0.9 to 0.6 to emulate an increase in snow trapping by

early successional vegetation.35 Subsequently, we decreased the

snow drifting parameter at a linear rate, which corresponded to

increasing snow capture as a result of the vegetation that developed

in each scenario from 1960 to 2005 (Table 2).

In the dense shrubland scenario we decreased the snow drifting

parameter from 0.6 to �1.0 from 1960 to 2005. In the open shrub-

land scenario we decreased the snow drifting parameter from 0.6 to

�0.5 from 1960 to 2005. In the sedge meadow scenario we

decreased the snow drifting parameter from 0.6 to 0 from 1960 to

2005. In all scenarios we assumed that plant height and summer leaf

area index (LAI) increased linearly in the first two decades following

drainage until they reached two-thirds of the maximum values shown

in Table 2. After 1971, we reduced the rate of increase in these

parameters so that they reached their maximum values in 2005. After

2005, we assumed that vegetation remained stable for the rest of the

simulation and held the snow drifting parameter constant (Table 2).

Modeled snow density is a function of both time and depth of snow.

It is a dynamic process related to fresh snow density, compaction, and

metamorphosis.68 The model explicitly considers the redistribution of

snow due to wind, which results in large differences in snow depth

and the ground thermal conditions in tundra landscape. The model

does not consider the effect of wind on snow density. In both shrub

scenarios we set the organic accumulation rate at 0.06 cm/year. In

the sedge meadow scenario we set the organic accumulation at

0.2 cm/year. These values were obtained from organic accumulation

rates estimated in the six DLBs we visited in the field (organic thick-

ness/estimated time since drainage). The assumed rate of organic

matter accumulation in our shrub-dominated scenarios (0.06 cm/year)

is slightly higher than rates reported for drained lakes on the Alaska

North Slope, which ranged from 0.009 to 0.047 cm/year.26,75 The rate

of organic soil development we used in the sedge wetland scenario

(0.2 cm/year) is similar to rates of organic matter accumulation

reported for productive peatlands.76,77 Soils in the region are typically

fine-grained tills and glaciofluvial deposits with some sandier sedi-

ments. In all models we assumed that organic soil was underlain by

sandy clay loam (sand 60%, silt 13%, clay 27%) which extended to

40 m and was underlain by bedrock.

TABLE 2 Parameters used in model scenarios of permafrost development in drained lake basins. In all drained lake basins the snow drifting
parameter was set to decrease linearly from 0.9 to 0.61 between 1951 and 1960. Subsequently, the snow drifting parameter was decreased at a
linear rate so it reached the value shown in the table in 2005. After 2005, the snow drifting parameter was held constant until 2100. The rate of
organic soil development was held constant for the entire model run (1950–2100). LAI is the abbreviation for leaf area index

Model scenario

Snow drifting

parametera
Maximum

summer LAIa
Maximum plant

height (m)a
Rate of organic layer

development (cm/yr)

Dense shrubland 0.0 2 1.0 0.06

Open shrubland �0.5 1 1.0 0.06

Sedge meadow �1.0 1 0.2 0.2

aValues from 2005 to 2100.

LANTZ ET AL. 181
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2.5.4 | Climate data

Climate data used to drive the model were generated by Met1km, a

long-term 1-km-resolution daily meteorological dataset,78 except

between 2014 and 2019, during which air temperature and precipita-

tion were estimated based on observations at the Inuvik climate sta-

tion (Supplemental Methods). Met1km integrates five coarser gridded

meteorological datasets, including two future emission scenarios (RCP

4.5 and 8.5). These datasets were downscaled to 1-km resolution

using the rebaselining method79 based on 1-km-resolution monthly

averages from WorldClim2.80 The data generated include daily mini-

mum and maximum air temperature, precipitation, vapor pressure,

solar radiation, downward longwave radiation, and wind speed from

1901 to 2100. The time-series meteorological data that we used are

based on the grid cell that includes HLDL3, a DLB in the middle of our

study area. Under RCP 8.5 the average annual temperature increases

by 1.0�C per decade (based on the slope of the linear trend) between

2020 and 2100, which is similar to the observed rate of 0.8�C per

decade from 1970 to 2020 (Figure S1). Under RCP 4.5 the average

rate of temperature increase from 2020 to 2100 is 0.3�C per decade

(Figure S1). Total annual precipitation is highly variable under both

RCP 4.5 and 8.5, but shows a gradual increase over time with rates of

2.8 and 13.2 mm per decade between 2020 and 2100, respectively

(Figure S1). To contextualize average monthly temperatures projected

by climate change scenarios RCP 4.5 and 8.5 with the broad-scale cli-

mate gradient in the Northwest Territories, they are also plotted

against climate normals (1981–2010) for Tuktoyaktuk, Inuvik, and

Normal Wells (Figure S2).

3 | RESULTS

3.1 | Field measurements

The DLBs that we sampled were physically, ecologically, and thermally

distinct from the surrounding tundra. The vegetation in the basins,

which drained between 1950 and 1995, was dominated by dwarf

birch and willows and had a canopy that was significantly taller than

the reference site (Figure 3). Mapping conducted using high-

resolution satellite imagery showed that all of the DLBs in the study

area that formed between 1950 and 2000 were dominated by a mix

of upright shrub and herbaceous vegetation and had only a sparse

cover of sedge wetland (Table 1). The basin that drained prior to 1930

was dominated by sedges and short willows. The canopy height at this

site was significantly lower than at most other drained basins, but was

similar to the reference site (Figure 3a). Vegetation in the ancient lake

basins that we used as reference sites consisted of dwarf shrub and

tussock tundra underlain by thick peat deposits.81

All five DLBs that drained between 1950 and 1995 had a thinner

organic layer than the reference site. These five DLBs had similar

organic soil thickness (1.5–4.2 cm), which were significantly less than

the lake that drained prior to 1930 (21.5 cm; Figure 3b). Late winter

snow depth was also greater at drained lakes compared to the

reference site. Lakes that drained between 1950 and 1995 had a

snow depth that was 28–124 cm greater than at the reference site,

whereas mean snow depth at the basin that drained prior to 1930

was only 12 cm greater than at the reference site (Figure 3c).

F IGURE 3 Physical conditions including: (a) vegetation height,
(b) organic soil thickness, (c) late winter snow depth, and (d) mean
annual ground temperature (1 m) at six drained lakes and one
reference site in the Tuktoyaktuk coastlands. The solid black line
inside each box represents the median value, the ends of the boxes
represent the 25th and 75th percentiles, and the whiskers show the
10th and 90th percentiles. Bars marked with the same letter are not
significantly different from each other and unlabeled bars and bars
marked with different letters are significantly different from each
other
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Differences in ground surface temperatures and at 1-m depth

reflected contrasts in biophysical characteristics of the sites, with all

drained basins exhibiting higher ground temperatures than the refer-

ence sites. Ground-surface temperatures (0.1 m below the surface) in

lakes that drained between 1950 and 1995 were elevated compared

to both reference sites and the sedge-dominated DLB (HLDL6), and

remained at the zero curtain throughout the winter (Figure 4).

Ground-surface temperatures at the sedge-dominated DLB were simi-

lar to our southern reference site near Jimmy Lake (Figure 4). Near-

surface ground temperatures in the summer were similar among all six

sites (Figure 4). Mean annual ground temperature (MAGT) at 1-m

depth in recently drained basins ranged between �0.11 and 0.8�C,

and these basins were all significantly warmer than the oldest drained

lake (HLDL6) with MAGT of �2.75�C, which was closer to the MAGT

at the reference site (Figure 4d). Average daily temperatures at 1 m

below the ground surface (Figure 5) indicate that active layer thick-

ness was greater than 1 m at all of the shrub-dominated lakes we

sampled. Active-layer freezeback at these sites was variable, and com-

pleted between December 8 and March 12, or not at all (Figure 5).

The sedge-dominated lake, which drained prior to 1930 (HLDL6), was

the only basin with temperatures consistently below 0�C at 1-m depth

(Figure 5).

3.2 | Permafrost modeling

In the thermal modeling scenarios shown in Figures 6 and 7, perma-

frost began to establish in lake bottoms immediately after drainage in

1950, but subsequent conditions varied in response to interactions

between climate warming and the impacts of vegetation succession

on snow depth and organic soil development (Figure 6). In the dense

and open shrubland scenarios (deep snow and slow organic develop-

ment), permafrost aggraded to the maximum depths of 12.8 and

14.3 m 42 and 63 years following drainage, respectively (Figure 6a,b).

In the sedge meadow scenario (shallow snow and rapid organic soil

development), modeled permafrost depth increased to 20.3 m by

2100 under climate scenario RCP 4.5. Due to a similar climate under

RCP 8.5 (until about 2060), modeled permafrost depth was 20.2 m by

2100 under this scenario (Figure 6c). Modeled permafrost aggradation

in the first three decades after the drainage was comparable with

F IGURE 4 Temperature at 0.1 m below the ground surface at six drained lakes and two reference sites in the Tuktoyaktuk Coastlands. The
dotted line shows the mean daily temperature from 2013 to 2017 and the shaded area represents the 95% confidence interval of the daily mean.
HLDL and SPDL are abbreviations for Husky Lakes Drained Lake and Swimming Point Drained Lake, respectively. Note the changes in the y-axis
scale between (a)–(f ) and (g–h)
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observations reported for Illisarvik, where a lake was experimentally

drained in 1978.35 The freezing front at Illisarvik was 5.7, 13.5, 13.8,

and 14.3 m in 1981, 1998, 2001, and 2005, respectively,

corresponding to 3, 20, 23, and 27 years after drainage in 1978.82 The

modeled ranges of permafrost depths in our three scenarios were 4.6–

5.4, 11.9–12.3, 11.9–13.4, and 12.0–13.7 m in 3, 20, 23, and 27 years

after the drainage, respectively, with the sedge meadow scenario

developing greater permafrost thicknesses than shrubland scenarios.

In the dense shrub scenario (deep snow and slow organic soil

development), maximum active layer thicknesses ranged from 1.2 to

1.3 m in the first four decades after drainage. Top-down permafrost

thaw associated with a warming climate began in this scenario around

2000 and, by 2097, permafrost was completely degraded under RCP

8.5, and only persisted below 8.1 m under RCP 4.5 (Figure 6a). Model-

ing showed that top-down thaw proceeded slowly at first, but then

increased rapidly when near-surface taliks began to form (Figure 6).

This is similar to the modeled permafrost degradation pattern with cli-

mate warming in the Hudson Bay Lowlands.83 In the open shrubland

scenario, the depth to the top of the permafrost ranged from 1.1 to

1.4 m in the first 50 years following drainage. In this scenario, top-

down permafrost degradation associated with a warming climate

began around 2020. Under RCP 4.5 permafrost persisted at 8-m

depth below a near-surface talik at the end of the simulation, but

thawing progressed to a depth of more than 10.5 m under RCP 8.5.

The depth to the permafrost table in the sedge meadow scenario

gradually decreased from 1.5 to 0.8 m over the first 50 years after

drainage with increases in vegetation cover and organic soil develop-

ment. Active layer thickness remained relatively stable until the end of

simulation under RCP 4.5, but began to increase steadily starting in

2080 under RCP 8.5 (Figure 6c).

The influence of biophysical conditions on ground thermal sensi-

tivity to climate warming was also evident in ground temperatures at

1 m at different periods during each ecological succession scenario

(Figure 7). In the dense shrub scenario, maximum summer tempera-

ture at 1-m depth increased by �2�C and 5.5�C from 2010–2090

under RCP 4.5 and 8.5, respectively (Figure 7a,b). In the open shrub-

land scenario, maximum summer temperature at 1-m depth increased

by 3 and 6.5�C from 2010–2090 under RCP 4.5 and 8.5, respectively

(Figure 7c,d). In the dense shrubland scenarios, temperatures

throughout winter remained isothermal by 2010, indicating that the

F IGURE 5 Temperature at 1 m below the ground surface at six drained lakes and two reference sites in the Tuktoyaktuk coastlands. The
dotted line shows the mean daily temperature from 2013 to 2017 and the shaded area represents the 95% confidence interval of the daily mean.
HLDL and SPDL are abbreviations for Husky Lakes Drained Lake and Swimming Point Drained Lake, respectively. Note the changes in the y-axis
scale between (a)–(d), (e–f), and (g–h)
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active layer was not completely refreezing (Figure 7a,b), and

corresponding to the onset of the top-down thaw evident in Figure 6.

Incomplete freezeback of the active layer in the open shrubland sce-

narios occurred after 2010 (RCP 4.5) and 2030 (RCP 8.5), resulting in

top-down permafrost thaw and near-surface talik development

(Figure 7c,d). In the sedge meadow scenario, a gradual increase in min-

imum winter temperature at 1 m depth was evident over time in both

RCP 4.5 and 8.5, but annual winter cooling of near-surface permafrost

persisted at all time steps except 2090 under RCP 8.5 (Figure 7e,f). In

the sedge meadow scenario, the temperatures at 1-m depth increased

with time and reached the highest levels in the 2090s under RCP 8.5

with the commencement of top-down thaw.

The impact of climate warming on permafrost aggradation and

degradation was also evident in model runs with progressively later

drainage dates (Figure 8). In the dense shrub scenario, increasingly

later drainage dates decreased the rate of permafrost aggradation and

sped the onset and rate of top-down thaw. The maximum thickness of

the permafrost in the dense shrub scenario was reduced from 16.5 m

(drainage in 1900) to 8.2 and 6.1 m (drainage in 2060) under the

climate change projections of RCP 4.5 and 8.5, respectively. Under

RCP 8.5, permafrost that aggraded following drainages after 1960

thawed completely by 2100 (Figure 8b). Under RCP 4.5, later drainage

decreased the rate of permafrost aggradation, and sped top-down

thaw, but the complete thaw of permafrost by 2100 did not occur for

all the drainage dates (Figure 8a). In the sedge meadow scenario,

drainage in later years slowed the rate of permafrost aggradation,

decreased maximum depth of permafrost, and increased active layer

thickness (Figure 8c–f). In this scenario the thickness of permafrost

increased continuously before 2100 in all the cases except drainage in

2060 under RCP 8.5 (Figure 8e,f). Under RCP 4.5, active layer thick-

ness in the sedge meadow scenario decreased gradually over time

regardless of drainage date due to organic soil development. However,

under RCP 8.5 later drainage dates resulted in top-down thaw,

which occurred more rapidly with increasingly later drainage dates

(Figure 8c,d). Model experiments that considered the development of

excess ice for the dense and open shrubland scenarios decreased the

rate of permafrost aggradation and reduced maximum permafrost

depth by up to 1.3 m due to the latent heat requirement of ground ice

formation and changes in the thermal properties of materials between

1.5 and 4 m depth (Figure S5). After 3 decades of warming, the

presence of excess ice in these model experiments reduced top-down

permafrost thaw by up to 2.3 m for a given year and delayed the

degradation of permafrost by 10–15 years (Figure S5).

4 | DISCUSSION

Our analysis of field data shows that the effects of ecological succes-

sion on organic soil development and snow drifting will strongly influ-

ence the aggradation and resilience of permafrost in DLBs in the

continuous permafrost zone. Our modeling study shows significant

top-down thaw 50–70 years following lake drainage in scenarios with

deep snow pack, shrub cover, and slow organic soil development.

Near-surface (1 m) ground temperatures in five drained basins with

dense shrub cover, shallow organic layers, and thick snow also

remained nearly isothermal during the onset of winter over 5 years of

observation (Figure 5). In the model scenario with sedge-dominated

vegetation, low snow cover, and rapid organic soil development, per-

mafrost aggradation continued and active layer thickness decreased

throughout the entire model run under RCP 4.5, due to the accumula-

tion of organic soil (Figure 6a,b). Under RCP 8.5 modest increases in

F IGURE 6 Modeled permafrost conditions (1950–2100) in three
drainage scenarios: (a) dense shrubland, (b) open shrubland, and
(c) sedge meadow. The red lines show the depth to the top of
permafrost and the blue lines show the depth to the base of
permafrost. Model runs using climate data from RCP 4.5 (2020–2100)
are shown as dashed lines and model runs using RCP 8.5 data are
shown as solid lines [Colour figure can be viewed at

wileyonlinelibrary.com]
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active layer thickness occurred in the last two decades of the sedge

meadow scenario, 130 years following drainage (Figure 6c). The

sedge-dominated site (thick organic soils and shallow snowpack) was

also the only DLB we sampled where permafrost was encountered

within the top 1 m (Figure 5).

Differences in temperature and active layer thickness in the DLBs

in our field study were driven by higher ground heat flux in summer

through soils with shallow organic horizons, and higher thermal con-

ductivity, and reduced heat loss during winter caused by deep snow

trapped by dense upright shrubs growing in DLBs. Observations at

Illisarvik, an experimentally drained lake in the study region also show

that snow captured by upright shrubs influences the ground thermal

regime and increases permafrost temperature relative to the adjacent

tundra.29,47 At the oldest drained basin we sampled (HLDL6), which

was dominated by sedges, a thick organic layer reduced heat flux to

frozen soils, and shallow snow cover promoted rapid freezeback and

cooling in the winter. Our model simulating succession to sedge

meadow also showed that permafrost aggrading under these condi-

tions was more resilient to climate warming than in shrub-

dominated DLBs.

Higher ground temperatures and modeled permafrost degrada-

tion in shrub-dominated DLBs compared with the lower temperatures

and shallower active layer thicknesses in sedge-dominated DLBs

shows that the ecological modification of climate-driven permafrost

can increase or decrease permafrost resilience within the continuous

permafrost zone. Stabilized retrogressive thaw slumps with deep

snow pack promoted by dense stands of upright shrubs also show

persistent increases in thaw depth and ground temperature,84,85

which increase the potential for disturbed slopes to destabilize in the

future.84 Observations of increased ground temperature and thaw

depth on drilling mud sumps with shallow organic layers, dense

upright shrub cover, and deep snow pack provide another example of

how these processes and feedbacks can affect permafrost condi-

tions.86 Snow trapping by shrubs on slumps, drained lakes, and sumps

probably has a larger impact on ground temperature than snow

drifting caused by tundra shrub proliferation at undisturbed sites

because well-developed organic layers at undisturbed sites reduce

heat conduction in summer.87,88 The topographic depression in

slumps and drained lakes, combined with vegetation exceeding 2 m in

height, also more effectively traps wind-transported snow compared

F IGURE 7 Modeled evolution of ground temperatures at 1-m depth under two climate projections in the three drainage scenarios initiated in
1950. Plots show daily mean temperatures by decade. Individual plots show the modeled conditions in the dense shrubland scenario (a–b), the
open shrubland scenario (c–d), and sedge meadow scenario (e–f). The column on the left shows the models that use RCP 4.5 and columns on the
right shows the models that use RCP 8.5 [Colour figure can be viewed at wileyonlinelibrary.com]
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with shorter shrub patches (<1 m) on the surrounding tundra.88

Observations of permafrost thaw, terrain subsidence, and talik devel-

opment following 30 years of deep snow caused by the construction

of a snow fence in the Peel Plateau Region89 suggest that areas with

warm permafrost are likely to be most sensitive to ecological changes

that promote snow accumulation or sustain shallow organics over

mineral soils.

Latent heat effects associated with excess ice are likely to slow

permafrost degradation in DLBs, but our modeling suggests that these

effects will be small in young DLBs where excess ground ice is low.

We did not sample the ground ice content at our study lakes, but low

excess ice contents of 8% in the top 0.5 m of permafrost, 32 years fol-

lowing the drainage of Lake Illisarvik38 suggests that near-surface gro-

und ice in the top few meters of permafrost may also be low at our

sites. Model experiments simulating excess ice contents ranging from

10 to 40% suggest that latent heat effects can reduce the rate of per-

mafrost aggradation, and delay the progression of top-down thaw by

several decades. High spatial variability in excess ice at Illisarvik also

suggests that both aggradation of permafrost and surface heave, as

well as top-down thaw will yield a mosaic of terrain, ecological, and

thermal conditions within individual basins. Higher ground ice content

and thicker organic layers,26,51,74,89 in ancient DLBs suggest that

these sites will be more resilient to climate warming than the recent

DLBs we studied. However, excess ice levels exceeding 50% at sites

on the Alaska North Slope75 suggest that these environments will also

be impacted by significant changes in topography and hydrology as

near-surface permafrost thaws. Fieldwork to characterize the amount

and types of ground ice in DLBs of varying ages in different geologic

settings is needed to better characterize the nature and magnitude of

changes that will result from climate-driven thaw.

Thermal modeling shows that thick organic soils and shallow

snow pack can protect permafrost in DLBs from thaw, but it is unclear

if ecological succession over the next century will produce these con-

ditions in the Tuktoyaktuk Coastlands. Research in the Old Crow Flats

F IGURE 8 Modeled effects of
drainage date on permafrost conditions
following drainage in model runs using
the climate time series shown in
Figure S1. (a–b) Dense shrubland and
(c–f) sedge meadow scenarios under RCP
4.5 and 8.5. The dashed lines show the
depth to the top of permafrost, and the
solid lines show the depth to the base of

permafrost. Different drainage years are
shown in different colors. Each curve
shows the model results from the
drainage year to 2100 [Colour figure can
be viewed at wileyonlinelibrary.com]
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shows that vegetation development following lake drainage depends

on soil moisture, where wet soils promote the development of

C. aquatilis-dominated communities with thick organic soil layers, and

mesic soils facilitate the establishment of willow thickets with thinner

organic layers.27 In our study area, all five of the recent drainages

(1950–1995) we sampled had mesic soils with thin organic layers and

were dominated by upright shrubs that promoted snow accumulation

(Table 1). Mapping across a larger number of DLBs in the Tuktoyaktuk

Coastlands shows that vegetation at the basin scale is a heteroge-

neous mix of upright shrub thickets interspersed with areas of grasses

and herbs, and small areas of hydrophilic vegetation (Table 1).47 On

centennial time scales these shrub- and grass-dominated plant com-

munities will be replaced by later seral vegetation.91–93 However, the

dominance of relatively mesic conditions 40–60 years after drainage

suggests that a transition to dwarf shrub tundra with relatively shal-

low organic layers is more likely than peatland development.94,95 Sev-

eral recent studies also indicate that increasing summer and winter

temperature, and a longer thaw season are likely to promote minerali-

zation and reduce rates of organic soil development in mesic tun-

dra.96–98

The ubiquity of peatlands on ancient drained lakes in the western

Arctic48,49,57 suggests that long-term ecological succession can yield

the low-stature vegetation and shallower snow that is conducive to

permafrost aggradation, but it is unclear if this transition will occur

under warming climate conditions and over what time scale. The pres-

ence of willow and birch macrofossils at the base of peat deposits in

an ancient DLB in the Old Crow Flats99 indicates that early succes-

sional shrub communities can be replaced by lower stature vegetation

on centennial to millennial time scales. In the Tuktoyaktuk Coastlands,

we sampled one sedge-dominated DLB with thick organic soil layers,

which drained 100–200 years ago (Table 1) (see also26,27,51). How-

ever, the rarity of these communities on younger sites, raises the pos-

sibility that the warmer climate, which has predominated since the

1950s, favors the development and persistence of shrub communities

following drainage.100,101 This is also consistent with a large body of

evidence demonstrating that increasing regional air temperatures

have driven shrub expansion in undisturbed tundra across the western

Arctic.88,102–104 More extensive sampling across a range of drained

lake ages, coupled with ongoing monitoring, could help to resolve

these uncertainties. Ultimately, models projecting localized permafrost

degradation indicate that long-term succession at these sites is likely

to differ from changes that occurred in response to the cold climate

that has predominated for the last 4,000 years.105

Taken together, our observations suggest that permafrost will

continue to aggrade into emergent surfaces across the Tuktoyaktuk

Coastlands despite even the most severe projected climate warming.

However, as regional temperatures rise, developing permafrost will

become increasingly susceptible to degradation caused by ecological

feedbacks. This conclusion is consistent with the observation of

short-term permafrost formation following the experimental drainage

of a lake in the extensive discontinuous permafrost of the Pechora

Lowland, Russia.106 At this site the degradation of recently developed

permafrost began a decade following drainage and was promoted by

increased snowpack associated with willow proliferation. Regardless

of the long-term outcome of succession, our modeling suggests that

short-term rates of organic matter accumulation typical in DLBs will

be too slow to protect developing permafrost from degradation in

response to anticipated climate warming. Although ground tempera-

tures in DLBs are likely to vary in response to fine-scale variation in

soil moisture, vegetation structure, snow depth, and organic layer

development, our data show that recently drained lakes will be

amongst the first permafrost-free environments to develop in a

warming Arctic. Our observation that most lakes in the Tuktoyaktuk

Coastlands that drained in the last 60 years are dominated by upright

shrubs indicates that this localized permafrost degradation will be

regionally widespread (Figure 1). Although these areas make up a

small proportion of the entire study area, the loss of warm and thin

permafrost at these sites will have a significant impact on ecological

processes including carbon flux,107 subsidence caused by lateral

thaw,84 and population dynamics of beavers and moose in tundra

ecosystems.108,109

Our field observations and modeling indicate that drained lakes

will be among the first permafrost-free environments to develop

under a warming climate in the continuous permafrost zone. Our

observations highlight that other emergent landscapes (alluvial envi-

ronments, floodplains, and coastal areas affected by isostatic uplift)

will also be sensitive to permafrost degradation with climate

warming, and are likely to emerge as the first permafrost-free envi-

ronments to develop in the continuous permafrost zone. Long-term

monitoring of DLBs and other emergent surfaces will provide critical

insights into variability in the changes that can be expected as con-

tinuous permafrost adjusts to a warming climate. The thermal sensi-

tivity of permafrost in DLBs also raises the possibility that other

common periglacial landforms that typically characterize these envi-

ronments (pingos, ice-wedge polygons) may not develop under a

warming climate. It is also possible that the features that character-

ize discontinuous permafrost (lithalsas, peat plateaus palsas,

etc.)110,111 may become more common in the emergent environ-

ments of the Tuktoyaktuk Coastlands. Sustaining long-term monitor-

ing, and conducting additional field and modeling studies will inform

how these environments will evolve under warming climate condi-

tions. Our results also imply that emergent environments further

south within warm continuous permafrost, or extensive discontinu-

ous permafrost terrain are likely to evolve as permafrost-free areas

under warming climate conditions. This shift in the trajectory of per-

mafrost aggradation/formation highlights the broader implications of

this study, and underscores the importance of integrating field

observation, sustained monitoring, and modeling to understand the

dynamics of permafrost environments.
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